Извещатель пожарный пламени многодиапазонный

ИП329/330-3-1 «НАБАТ ИК/УФ» ТЦАФ.425241.029 РЭ

Руководство по эксплуатации

СОДЕРЖАНИЕ

1	ОПИСАНИЕ И РАБОТА	3
	1.1 Назначение	3
	1.2 Технические характеристики	5
	1.3 Конструкция извещателя	8
	1.4 Устройство и работа	9
	1.5 Обеспечение взрывобезопасности	10
	1.6 Средства измерения	
	1.7 Маркировка	
	1.8 Упаковка	12
2	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	13
	2.1 Эксплуатационные ограничения	13
	2.2 Подготовка ИПП к использованию	14
	2.3 Обеспечение взрывобезопасности при монтаже	16
	2.4 Порядок установки и монтажа	
	2.5 Перечень возможных неисправностей	21
3	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	21
4	ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	22
5	комплектность	23
6	СРОКИ СЛУЖБЫ И ХРАНЕНИЯ,	
	ГАРАНТИИ ИЗГОТОВИТЕЛЯ	23
7	СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	24
8	СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ	25
9	СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	25
10	ФОРМА СБОРА ИНФОРМАЦИИ	26
	СВЕДЕНИЯ О ВВОДЕ ИЗВЕЩАТЕЛЯ	
	В ЭКСПЛУАТАНИЮ	27

Настоящее руководство по эксплуатации является объединенным эксплуатационным документом, включающим в себя разделы руководства по эксплуатации, инструкции по монтажу, формуляра и паспорта. Настоящее руководство по эксплуатации предназначено для ознакомления с составом, техническими характеристиками, устройством, принципом действия и использованием извещателя пожарного пламени многодиапазонного ИПЗ29/330-3-1 «НАБАТ ИК/УФ» в объеме, необходимом для монтажа и эксплуатации, а также содержит сведения о таре и упаковке, транспортировке, техническом обслуживании, сроке службы и свидетельство о приемке.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

Извещатель пожарный пламени многодиапазонный ИПЗ29/330-3-1 «НАБАТ ИК/УФ» (в дальнейшем - ИПП), автоматический, предназначен для обнаружения возгораний, сопровождающихся появлением электромагнитного излучения очага пламени, находящегося в поле зрения ИПП, и выдачи тревожного извещения на приборы приемно-контрольные пожарные (ППКП). При обнаружении электромагнитного излучения извещатель переходит из дежурного режима в режим «Пожар».

Конструкция ИПП обеспечивает возможность как двухпроводного (электропитание осуществляется по шлейфу пожарной сигнализации), так и четырехпроводного (электропитание осуществляется от отдельного источника) подключения к ППКП. При этом допускается периодическое прерывание или переполюсовка напряжения питания ИПП длительностью не более 100 мс и частотой повторения не более 1,5 Гц.

ИПП не является средством измерения.

ИПП рассчитан на круглосуточную непрерывную работу.

По защищенности от воздействия окружающей среды ИПП по

ГОСТ Р 52931 имеет следующие исполнения:

- защищенные от попадания внутрь ИПП твердых тел (пыли) и воды (обыкновенные);
- взрывозащищенные.

ИПП во взрывозащищенном исполнении имеют вид взрывозащиты «искробезопасная электрическая цепь» уровня іа, маркировку взрывозащиты 0Ех іа ІІС Т6 Ga X, соответствуют требованиям ГОСТ 31610.0, ГОСТ 31610.11 и могут применяться во взрывоопасных зонах класса 0 и ниже согласно ГОСТ 30852.9, в которых возможно образование смесей категорий ІІА, ІІВ и ІІС согласно ГОСТ 30852.11, групп Т1-Т6 согласно ГОСТ 30852.5.

Взрывозащищенность ИПП обеспечивается только при его подключении к сертифицированным искробезопасным цепям - шлейфам сигнализации и электропитания, электрические параметры которых, обеспечивают подключение данных ИПП без нарушения взрывобезопасности.

ИПП имеет двухцветный (зеленый/красный) светодиодный индикатор режимов работы.

В процессе функционирования ИПП может находиться в одном из следующих режимов:

- дежурный режим, при отсутствии воздействия электромагнитного излучения пламени. Извещение о дежурном режиме отображается проблесковым зеленым свечением светодиодного индикатора;
- режим «Пожар», при воздействии на ИПП электромагнитного излучения пламени достаточной интенсивности. Режим «Пожар» отображается непрерывным красным свечением светодиодного индикатора.
- режим «Перегрузка», при воздействии на ИПП потока излучения, превышающего допустимое значение. Режим «Перегрузка» должен отображаться проблесковым красным свечением светодиода.

Перевод ИПП из режима «Пожар» в дежурный режим осуществляется прерыванием электропитания на время не менее 3 секунд.

Перевод ИПП из режима «Перегрузка» в дежурный режим осуществляется снижением значения воздействующего излучения до уровня, при котором индикаторные светодиоды извещают о дежурном режиме.

Степень защиты ИПП оболочкой – IP67 по ГОСТ 14254.

По устойчивости к воздействию температуры и влажности окружающего воздуха ИПП соответствует группе исполнения Д3 по ГОСТ Р 52931, но для работы в диапазоне температур окружающей среды от минус 50 до плюс 55 °C.

По устойчивости к воздействию синусоидальной вибрации высокой частоты ИПП соответствует группе исполнения VI по ГОСТ Р 52931.

1.2 Технические характеристики

- 1.2.1 Чувствительность ИПП (расстояние, при котором обеспечивается устойчивое срабатывание ИПП от воздействия излучения пламени тестовых очагов по ГОСТ Р 53325 за время не более 6 с) составляет:
- для TП-5 25м (1-й класс согласно требованиям ГОСТ P 53325);
- для $T\Pi$ -6 25м (1-й класс согласно требованиям ГОСТ Р 53325).
- 1.2.2 ИПП сохраняет работоспособность и не выдает сигналы «Пожар», «Перегрузка» при воздействии электромагнитного излучения от:
- ламп накаливания при освещенности до 1000 лк.
- солнца (прямое и отраженное) при освещенности до 70000 лк;
- нагретых объектов с температурой поверхности до 500 °C.
- 1.2.3 Угол обзора ИПП не менее 90° .
- 1.2.4 Номинальное напряжение электропитания ИПП 24 В постоянного тока с допустимыми переполюсовками длительностью до 100 мс и частотой повторения не более 1,5 Γ ц.
- $1.2.5\ \mathrm{ИП\Pi}$ сохраняет работоспособность при изменении напряжения электропитания от $8\ \mathrm{дo}\ 29\ \mathrm{B}.$

1.2.6 Параметры электрических искробезопасных цепей (цепи электропитания и шлейфы сигнализации) ИПП во взрывозащищенном исполнении приведены в таблице 1.

Таблица 1

Параметр	Значение
Номинальное напряжение электропитания, В	24
Максимальное входное напряжение U_i , B	29
Максимальный входной ток I _i , мА	110
Максимальная внутренняя емкость C_i , $\pi\Phi$	1000
Максимальная внутренняя индуктивность $\mathbf{L}_{\!\scriptscriptstyle i}$, м Γ н	0,1
Максимальная входная мощность P_i , Вт	0,65
Примечание - Максимальное входное напряжение $\mathbf{U}_{_{\mathrm{I}}}$ и максимальный входной ток $\mathbf{I}_{_{\mathrm{I}}}$ не могут действовать одновременно.	

- 1.2.7 Ток, потребляемый ИПП по цепи электропитания при номинальном напряжении:
- в дежурном режиме и режиме «Перегрузка» не более 400 мкА;
- в режиме «Пожар» не более 5 мА.
- 1.2.8 Выходным сигналом ИПП в режиме «Пожар» является замыкание нормально разомкнутых контактов оптоэлектронного реле.
- 1.2.9 Максимальные ток и напряжение, коммутируемые контактами оптоэлектронного реле, не менее 300 мА и 50 В соответственно.
- 1.2.10 Режим работы ИПП круглосуточный, непрерывный.
- 1.2.11 Габаритные размеры ИПП с кронштейном, не более:

L - 177 мм;

B-113 мм;

H - 119 MM.

Масса ИПП – не более 600 г.

1.2.12 Изоляция электрических цепей ИПП относительно корпуса, а также изоляция между цепями электропитания и выходными

контактами оптоэлектронного реле выдерживает в течение одной минуты действие испытательного напряжения частотой от 45 до $65~\Gamma$ ц и эффективным значением 500~B.

- 1.2.13 Сопротивление изоляции между электрическими цепями и корпусом ИПП, не менее:
- в нормальных климатических условиях 20 MOм;
- в граничных условиях рабочей температуры и влажности 5 МОм.
- 1.2.14 ИПП сохраняет работоспособность при и после воздействия на него повышенной температуры окружающей среды 55 °C.
- 1.2.15 ИПП сохраняет работоспособность при и после воздействия на него пониженной температуры окружающей среды минус 50 °C.
- $1.2.16~\rm ИПП$ сохраняет работоспособность при и после воздействия на него повышенной температуры окружающей среды $40~\rm ^{\circ}C$ при относительной влажности воздуха $93~\rm \%$.
- 1.2.17 ИПП сохраняет работоспособность при воздействии на него синусоидальной вибрации (устойчивость) в диапазоне частот от 10 до 150 Гц с амплитудой:
- смещения, равной 0,035 мм для частоты ниже частоты перехода (57-62) Γ ц;
- ускорения, равной 4,905 м/с² (0,5 g) для частоты выше частоты перехода.
- $1.2.18~\rm{HIII}$ сохраняет работоспособность после воздействия на него синусоидальной вибрации (прочность) в диапазоне частот от $10~\rm{дo}~150~\rm{F}$ ц с амплитудой:
- смещения, равной 0,075 мм для частоты ниже частоты перехода (57-62) Γ ц;
- ускорения, равной 9,81 м/с 2 (1 g) для частоты выше частоты перехода.
- 1.2.19 ИПП сохраняет работоспособность при воздействии на него прямого механического удара с энергией 1,9 Дж.

- 1.2.20 ИПП устойчив к наносекундным импульсным помехам по ГОСТ 30804.4.4 со степенью жесткости испытаний 2.
- 1.2.21 ИПП устойчив к электростатическим разрядам по ГОСТ 30804.4.2 со степенью жесткости испытаний 2.
- 1.2.22 ИПП устойчив к радиочастотному электромагнитному полю по ГОСТ 30804.4.3 со степенью жесткости испытаний, относящейся к задачам общего характера, в полосе частот от 80 до 1000 МГц 2, со степенью жесткости испытаний, относящейся к устойчивости в условиях помехоэмиссии от цифровых радиотелефонов, для полос частот от 800 до 960 МГц и от 1,4 до 2 ГГц 2.
- 1.2.23 Радиопомехи индустриальные от ИПП соответствуют нормам, установленным ГОСТ 30805.22 для оборудования класса Б (применение в жилых, коммерческих и производственных зонах с малым энергопотреблением по ГОСТ 30804.6.3).
- 1.2.24 Средняя наработка ИПП на отказ не менее 60×10^3 часов.
- 1.2.25 Средний срок службы ИПП 10 лет.

1.3 Конструкция извещателя

1.3.1 ИПП выполнен в разборном корпусе из алюминиевого сплава АК-12. Общий вид ИПП приведен на рисунке 1. Внутри корпуса установлены печатные платы с фотоприемником и радиоэлементами.

Установка ИПП на объекте осуществляется с помощью кронштейна, обеспечивающего перемещение поля зрения ИПП в горизонтальной и вертикальной плоскостях.

- 1.3.2 ИПП подключается к шлейфу пожарной сигнализации и цепи питания, с помощью клеммных колодок, расположенных на печатной плате внутри корпуса ИПП.
- 1.3.3 Клеммные колодки ИПП рассчитаны на подключение проводников сечением до $2,5~{\rm mm}^2.$
- 1.3.4 Ввод кабелей шлейфа пожарной сигнализации внутрь кор-

пуса ИПП производится через два герметичных кабельных ввода, расположенных на корпусе ИПП. Кабельные вводы рассчитаны на герметизацию кабеля круглого сечения диаметром от 4,5 до 8 мм.

- 1.3.5 Расположение клеммных колодок показано на рисунке 2.
- 1.3.6 Степень защиты, обеспечиваемая оболочкой ИПП IP67 по ГОСТ 14254.

1.4 Устройство и работа

В ИПП использован принцип спектральной селекции, позволяющий обеспечить высокую помехозащищенность.

В качестве первого оптического элемента применен многоспектральный (ИК) фотоприемник - быстродействующий фотогальванический приемник излучения, преобразующий электромагнитное излучение пламени и других источников в электрические сигналы. Фотогальванический приемник реагирует на электромагнитное излучение в нескольких спектральных поддиапазонах от 0,9 до 4,5 мкм.

В качестве второго оптического элемента применен ультрафиолетовый (УФ) фотоприемник, который реагирует на электромагнитное излучение в диапазоне от 180 до 260 нм.

Сочетание двух фотоприемников практически исключает вероятность ложных срабатываний ИПП.

Микроконтроллер выделяет и сравнивает сигналы от пламени и фоновых оптических помех и принимает решение о переходе ИПП в режим «Пожар».

В случае превышения допустимого порога излучения, попадающего на ИК-фотоприемник ИПП переходит в режим «Перегрузка». В этом режиме ИПП продолжает контролировать наличие электромагнитного излучения пламени с помощью только УФ-фотоприемника и при его обнаружении переходит в режим «Пожар». Однако помехозащищенность ИПП при этом может снизиться. Для восстановления помехозащищенности необходимо устранить превышение допустимого порога излучения путем

изменения места расположения ИПП, или устранения источника излучения.

1.5 Обеспечение взрывобезопасности

- 1.5.1 ИПП во взрывозащищенном исполнении имеет вид взрывозащиты «искробезопасная электрическая цепь» уровня іа, маркировку взрывозащиты 0Ex іа IIC T6 Ga X, и соответствует требованиям ГОСТ 31610.0, ГОСТ 31610.11.
- 1.5.2 Знак «Х» в маркировке взрывозащиты означает, что при эксплуатации ИПП следует соблюдать следующие специальные условия:
- ИПП должен подключаться только к сертифицированным искробезопасным цепям шлейфам сигнализации и электропитания, электрические параметры которых обеспечивают подключение данного ИПП без нарушения его взрывобезопасности;
- корпус ИПП должен быть заземлен;
- корпус ИПП в процессе эксплуатации не должен подвергаться механическим воздействиям, способным вызвать фрикционное искрообразование.
- 1.5.3 В соответствии с ГОСТ 31610.0 и ГОСТ 31610.11 взрывозащищенность ИПП обеспечивается применением специальных схемотехнических и конструктивных решений:
- ограничением величины внутренних емкости и индуктивности;
- ограничением максимального напряжения на внутренних емкостях ИПП;
- выполнением печатных плат с учетом требований ГОСТ 31610.11.
- обеспечением необходимых электрических зазоров и путей утечек и неповреждаемости элементов, в т.ч. за счет покрытия всей печатной платы тремя слоями эпоксидного лака и заливкой части элементов эпоксидным компаундом;
- ограничением разрядных токов до искробезопасных величин;
- предотвращением разряда внутренних емкостей во внешние искробезопасные цепи;
- изготовлением корпуса ИПП из сплава АК-12, содержащего в

своем составе в сумме менее 7,5 % магния, титана и циркония, для обеспечения его фрикционной искробезопасности;

- ограничением максимальной температуры поверхности корпуса, определяемой максимальной рассеиваемой мощностью.
- наличием клеммы заземления на корпусе ИПП.

1.6 Средства измерения

Для определения чувствительности ИПП используются специальные средства измерений - тестовые очаги пожара ТП-5 и ТП-6. Огневые испытания проводятся в соответствии с приложением А к ГОСТ Р 53325.

Для оперативной проверки работоспособности ИПП у потребителя могут применяться малогабаритные тестовые очаги (МТО) — зажженная спичка, бытовая зажигалка, стеариновая свеча.

Проверку работоспособности ИПП во взрывозащищенном исполнении, находящихся во взрывоопасной зоне следует производить помощью комплекта тестового взрывозащищенного производства АО «НИИ «Гириконд».

1.7 Маркировка

- 1.7.1 Маркировка ИПП в обыкновенном исполнении соответствует ГОСТ 26828 и чертежам предприятия-изготовителя.
- 1.7.2 На корпусе ИПП в обыкновенном исполнении расположены табличка и знак заземления в соответствии с ГОСТ 21130.

Содержание таблички:

- слова «Извещатель пожарный пламени многодиапазонный»;
- условное обозначение ИПП ИПЗ29/330-3-1;
- условное наименование «НАБАТ ИК/УФ»;
- единый знак обращения продукции на рынке Евразийского экономического союза;
- товарный знак предприятия-изготовителя;
- порядковый номер ИПП;

- дата изготовления;
- номинальное напряжение питания ИПП;
- степень защиты ИПП оболочкой по ГОСТ 14254.
- 1.7.3 Маркировка ИПП во взрывозащищенном исполнении должна соответствовать требованиям ГОСТ 31610.0, ГОСТ 31610.11 и чертежам предприятия-изготовителя.
- 1.7.4 На корпусе ИПП во взрывозащищенном исполнении расположены табличка и знак заземления в соответствии с ГОСТ 21130.

Содержание таблички:

- товарный знак предприятия-изготовителя;
- слова «Извещатель пожарный пламени многодиапазонный»;
- условное обозначение ИПП ИПЗ29/330-3-1;
- условное наименование «НАБАТ ИК/УФ»;
- маркировка взрывозащиты 0Ex іа IIC T6 Ga X;
- единый знак обращения продукции на рынке Евразийского экономического союза:
- знак по TP TC 012/2011;
- температура окружающей среды при эксплуатации:
 - 50 °C \leq T_a \leq + 55 °C;
- порядковый номер ИПП;
- дата изготовления;
- наименование органа сертификации и номер сертификата;
- параметры искробезопасной цепи;
- степень защиты ИПП оболочкой по ГОСТ 14254.

1.8 Упаковка

1.8.1 ИПП упаковывают в индивидуальную потребительскую и транспортную тару.

Упаковывание ИПП в потребительскую тару (коробку из гофрированного картона) выполняется в соответствии с чертежами предприятия – изготовителя и указаниями таблицы 3.

1.8.2 Порядок размещения ИПП в потребительской таре, масса и

габаритные размеры тары соответствуют чертежам предприятия—изготовителя.

1.8.3 Транспортная тара - типа 1 по ГОСТ 5959.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 В целях исключения возможного снижения помехозащищенности место установки и ориентацию ИПП следует выбирать таким образом, чтобы исключить попадание в поле его зрения мощных источников инфракрасного излучения, способных вызвать перегрузку ИК канала ИПП (1.4).
- 2.1.2 Электродуговая сварка не должна проводиться ближе 15 м от ИПП. Следует иметь в виду, что органические связующие материалы покрытия электродов, применяемых для электродуговой сварки, а также органические загрязнения на свариваемых поверхностях (масло, краска и т.п.), сгорающие в сварочной дуге, могут приводить к срабатыванию ИПП.

Газовая сварка требует обязательного отключения системы пожарной сигнализации, поскольку газовая горелка представляет собой реальное пламя.

- 2.1.3 При монтаже ИПП на открытой площадке рекомендуется размещать его под навесом (защитным козырьком), ограничивающим продолжительное воздействие снега или дождевых капель, способных из-за попадания на входное окно уменьшить чувствительность ИПП.
- 2.1.4 Не рекомендуется устанавливать ИПП в местах, где возможно выделение газов, паров и аэрозолей, способных вызвать коррозию.
- 2.1.5 Производитель не гарантирует качество функционирования ИПП в случае, если электромагнитная обстановка в месте их уста-

новки не соответствует условиям, указанным в 1.2.20 – 1.2.22 настоящего руководства.

2.2 Подготовка ИПП к использованию

- 2.2.1. Меры безопасности при подготовке ИПП к использованию
- 2.2.1.1 По способу защиты человека от поражения электрическим током ИПП относится к третьему классу по ГОСТ 12.2.007.0.
- 2.2.1.2 ИПП питается низковольтным напряжением (до 30 В) постоянного тока и при работе с ним не существует возможности поражения электрическим током.
- 2.2.1.3 ИПП соответствует требованиям ГОСТ 12.2.003, ГОСТ IEC 60065, а ИПП во взрывозащищенном исполнении ГОСТ 31610.0, ГОСТ 31610.11 и являются безопасными для обслуживающего персонала при монтаже, ремонте и регламентных работах как в исправном состоянии, так и в условиях возможных неисправностей.
- 2.2.1.4 К работам по монтажу, установке, проверке, обслуживанию и эксплуатации ИПП допускаются лица, имеющие необходимую квалификацию, ознакомленные с настоящим Руководством по эксплуатации и прошедшие инструктаж по технике безопасности.
- 2.2.1.5 При работе с ИПП необходимо соблюдать правила, изложенные в инструкции «Правила технической эксплуатации электроустановок потребителей» (ПТЭЭП), и руководствоваться требованиями, изложенными в ГОСТ Р 12.1.019, ГОСТ 12.3.019, ГОСТ 31610.11, ГОСТ 30852.18 и ГОСТ 30852.19.
- 2.2.1.6 При установке, замене и снятии ИПП необходимо соблюдать правила работ на высоте.
- 2.2.2 Объем и последовательность внешнего осмотра ИПП
- 2.2.2.1 После получения ИПП подготовить рабочее место, вскрыть упаковку, проверить комплектность согласно настоящему руководству и упаковочной ведомости. Если ИПП перед

вскрытием упаковки находился в условиях отрицательных температур, произвести его выдержку при комнатной температуре не менее двух часов.

Произвести внешний осмотр ИПП и убедиться в отсутствии видимых механических повреждений, целостности лакокрасочного покрытия и защитного стекла входного окна ИПП, наличии маркировки.

2.2.3 Контроль работоспособности ИПП

ИПП поставляется потребителю полностью настроенным и готовым к применению. Каких-либо дополнительных настроек ИПП у потребителя не предусмотрено.

При необходимости потребитель может произвести контроль работоспособности ИПП перед его монтажом.

- 2.2.3.1 Для контроля работоспособности ИПП потребуется следующее оборудование:
- источник питания, обеспечивающий выходное напряжение постоянного тока от 10 до 14 В, при токе нагрузки 10 мА;
- малогабаритный тестовый очаг (МТО). В качестве МТО могут быть использованы зажженная спичка, бытовая зажигалка, стеариновая свеча.

ВНИМАНИЕ: НЕ ДОПУСКАЕТСЯ ПРИМЕНЕНИЕ МТО ВО ВЗРЫВООПАСНОМ ПОМЕЩЕНИИ!

- омметр с пределом измерения до 10 Ом;
- источник света с лампой накаливания мощностью 60 Вт;
- люксметр с пределом измерения до 1000 лк;
- секундомер.
- 2.2.3.2 Отвернув три винта снять основание 2 (рисунок 1) ИПП.
- 2.2.3.3 Подключить ИПП к источнику питания с помощью клеммной колодки 1 (рисунок 2). При этом положительный вывод источника питания подключить к контакту 1, а отрицательный к контакту 2 клеммной колодки ИПП.
- 2.2.3.4 Включить источник питания. Проконтролировать дежур-

ный режим ИПП по проблесковому зеленому свечению светодиодного индикатора 3 (рисунок 1).

2.2.3.5 Воздействовать на фотоприемник ИПП излучением МТО с расстояния от 10 до 15 см в течении не менее 6 с. Проконтролировать переход ИПП в режим «Пожар» по непрерывному красному свечению светодиодного индикатора.

С помощью омметра измерить сопротивление между контактами 3 и 5 клеммной колодки ИПП. Величина сопротивления не должна превышать 3,5 Ом.

Перевести ИПП в дежурный режим, выключив источник питания на время не менее 3 с.

- 2.2.3.6 Установить перед ИПП в поле его зрения источник света на расстоянии, при котором освещенность в плоскости окна фотоприемника составит не более 250 лк. Выдержать ИПП в таком состоянии в течение 1 минуты. За контрольное время извещатель не должен перейти в режим «Перегрузка» или «Пожар».
- 2.2.3.7 Выключить источник постоянного тока и отключить от него ИПП. На этом проверка ИПП закончена.

2.3 Обеспечение взрывобезопасности при монтаже

- 2.3.1 Монтаж ИПП во взрывозащищенном исполнении должен производиться в соответствии с требованиями ГОСТ IEC 60079-14, гл. 7.3 ПУЭ, ПТЭЭП и настоящего руководства.
- 2.3.2 ИПП во взрывозащищенном исполнении допускается подключать только к искробезопасным выходным цепям (шлейфам сигнализации) ППКП или барьеров искрозащиты, имеющих сертификат соответствия. При этом электрические параметры искробезопасных цепей ППКП или барьеров искрозащиты должны обеспечивать подключение данных ИПП без нарушения взрывобезопасности.

ВНИМАНИЕ: ПРИ ПОДКЛЮЧЕНИИ ИПП ВО ВЗРЫвозащищенном исполнении должны соблю-ДАТЬСЯ СЛЕДУЮЩИЕ ТРЕБОВАНИЯ:

$$\begin{split} \boldsymbol{U}_{i} & \geq \boldsymbol{U}_{0}; \\ \boldsymbol{I}_{i} & \geq \boldsymbol{I}_{0}; \\ \boldsymbol{P}_{i} & \geq \boldsymbol{P}_{0}; \\ (\sum \boldsymbol{C}_{i} + \boldsymbol{C}_{m}) & \leq \boldsymbol{C}_{0}; \\ (\sum \boldsymbol{L}_{i} + \boldsymbol{L}_{m}) & \leq \boldsymbol{L}_{0} \end{split}$$

где U_i – максимальное входное напряжение ИПП (см. таблицу 1); U₀ - максимальное выходное напряжение применяемого ППКП, источника питания или барьера искрозащиты;

I_. – максимальный входной ток ИПП (см. таблицу 1);

 ${
m I_0}$ – максимальный выходной ток применяемого ППКП, источника питания или барьера искрозащиты;

Р: – максимальная входная мощность ИПП (см. таблицу 1);

Р₀ - максимальная выходная мощность применяемого ППКП, источника питания или барьера искрозащиты;

 $\sum C_i$ – сумма внутренних емкостей (C_i) всех извещателей подключенных к данному шлейфу;

∑L_: – сумма внутренних индуктивностей (L_:) всех извещателей подключенных к данному шлейфу;

 $C_{_{\rm III}}$ и $L_{_{\rm III}}$ - емкость и индуктивность кабелей шлейфа; $C_{_{\rm O}}$ - максимальная внешняя емкость, которая может быть подключена к искробезопасным выходам применяемого ППКП, источника питания или барьера искрозащиты;

L₀ - максимальная внешняя индуктивность, которая может быть подключена к искробезопасным выходам применяемого ППКП, источника питания или барьера искрозащиты.

НЕСОБЛЮДЕНИЕ ДАННЫХ ТРЕБОВАНИЙ ПРИВОДИТ К НАРУШЕНИЮ ИСКРОБЕЗОПАСНОСТИ ИПП!

2.3.3 Монтаж искробезопасных электрических цепей должен производиться кабелем с изолированными проводами. Электрическая прочность изоляции проводов должна быть не менее 500 В.

2.3.4 Все подключения необходимо проводить при отключенном электропитании.

2.4 Порядок установки и монтажа

- 2.4.1 Монтаж ИПП на объекте контроля должен производиться по заранее разработанному проекту, в котором учитываются все требования, изложенные в разделе 7 ПУЭ, ПТЭЭП, и настоящем Руководстве по эксплуатации.
- 2.4.2 При монтаже ИПП в взрывозащищенном исполнении следует дополнительно учитывать требования ГОСТ IEC 60079-14.
- 2.4.3 Оптическая ось ИПП должна быть сориентирована в направлении, где вероятность появления пламени максимальна, при этом следует учитывать рекомендации по пунктам 2.1.1 2.1.5 настоящего Руководства по эксплуатации.
- 2.4.4 Расстояние до очага возгорания L, на котором должно произойти срабатывание ИПП, зависит от площади очага возгорания S (${\rm M}^2$), типа очага возгорания (ТП-5, ТП-6) и определяется по формуле:

L тп-5 =
$$(25(S/0,1)^{1/2})$$
 м. L тп-6 = $(25(S/0,2)^{1/2})$ м. Пример расчета для площади очага возгорания в 1 м²: L = $(25(1/0,1)^{1/2})$ м = 79 м.

2.4.5 Минимальная величина площади очага возгорания (S, м²), для которого должно произойти срабатывание ИПП, зависит от расстояния до него (L, м), типа очага возгорания (ТП-5, ТП-6) и рассчитывается по формулам:

$$ST\Pi$$
-5 = $(0.1L^2/625)$ M^2 , $ST\Pi$ -6 = $(0.2L^2/625)$ M^2 .

Пример расчета для расстояния 100 м:

STIT-5 =
$$(0.1 \times 100^2 / 625)$$
 m² = 1.6 m², STIT-6 = $(0.2 \times 100^2 / 625)$ m² = 3.2 m².

Зависимость дальности обнаружения очага пламени от его углового положения по отношению к оптической оси ИПП приведена на рисунке 3.

2.4.6 Конструкция ИПП обеспечивает возможность как двухпроводного (электропитание осуществляется по шлейфу пожарной

сигнализации), так и четырехпроводного (электропитание осуществляется от отдельного источника) подключения.

При обеих схемах подключения допускается периодическое прерывание или переполюсовка напряжения питания ИПП длительностью не более 100 мс и частотой повторения не более 1,5 Гц.

При четырехпроводном подключении контакты 3 и 5 клеммной колодки ИПП (контакты оптореле) можно использовать в произвольной полярности.

- 2.4.7 Клеммная колодка ИПП допускает подключение проводников сечением до 2,5 мм². Для обеспечения герметичности корпуса ИПП следует использовать только кабель круглого сечения диаметром от 4,5 до 8 мм.
- 2.4.8 Схемы двухпроводного и четырехпроводного подключения ИПП приведены на рисунках 4 и 5 соответственно.
- 2.4.9 При монтаже ИПП закрепить основание кронштейна 5 (рисунок 1) в соответствии с проектом (на стене, потолке контролируемого помещения или на специальных приспособлениях вне помещения).
- 2.4.10 Снять основание 2 (рисунок 1), отвернув три винта.
- 2.4.11 Ослабить гермовводы 4 (рисунок 1) и провести через них кабели шлейфа пожарной сигнализации (при использовании одного кабеля заглушить второй гермоввод заглушкой из комплекта ИПП).
- 2.4.12 Подключить проводники кабелей к клеммной колодке ИПП в соответствии с выбранной схемой подключения.

В случае двухпроводного подключения ИПП установить в контакты клеммной колодки перемычку и дополнительный резистор в соответствии со схемой подключения изображенной на рисунке 4. Величина сопротивления дополнительного резистора задает ток потребления ИПП в режиме «Пожар» (ток срабатывания). Значение этого тока следует рассчитывать по формуле: $I_{\text{nox}} = 4,5 + \left(U_{\text{min}} - 0,7\right)/\left(R_{\text{g}} + 0,4\right)$

$$I_{\text{new}} = 4.5 + (U_{\text{new}} - 0.7) / (R_{\text{n}} + 0.4)$$

где $I_{\text{пож}}$ - ток потребления ИПП в режиме «Пожар», мА;

- $U_{_{III}}$ напряжение в шлейфе сигнализации при срабатывании ИПП. В:
- $R_{_{\pi}}$ сопротивление добавочного резистора, кОм.
- 2.4.13 Установить основание 2 (рисунок 1) и закрепить его тремя винтами до упора основания в корпус ИПП.
- 2.4.14 Затянуть гермовводы до уплотнения кабеля.

ВНИМАНИЕ: ВО ИЗБЕЖАНИЕ НАРУШЕНИЯ ГЕРМЕТИЧНОСТИ КОРПУСА ИПП СЛЕДУЕТ СТРОГО СОБЛЮДАТЬ СЛЕДУЮЩИЕ УСЛОВИЯ МОНТАЖА:

- ИСПОЛЬЗОВАТЬ ТОЛЬКО КАБЕЛЬ КРУГЛОГО СЕЧЕНИЯ ДИАМЕТРОМ ОТ 4,5 ДО 8 ММ;
- ГЕРМОВВОДЫ ДОЛЖНЫ БЫТЬ ЗАТЯНУТЫ ДО ПОЛ-НОГО УПЛОТНЕНИЯ КАБЕЛЯ РЕЗИНОВОЙ ВТУЛКОЙ!
- 2.4.15 Ослабив винты кронштейна развернуть ИПП таким образом, чтобы его оптическая ось была направлена согласно проекту, после чего закрепить извещатель на кронштейне.
- 2.4.16 После монтажа всей системы пожарной сигнализации проверить ее работоспособность в соответствии с паспортом на приемно-контрольный прибор и настоящим Руководством по эксплуатации. Срабатывание ИПП в обыкновенном исполнении проверить от любого МТО, размещенного на расстоянии от 15 до 20 см от извещателя в поле его зрения.

ВНИМАНИЕ: РАБОТОСПОСОБНОСТЬ ИЗВЕЩАТЕ-ЛЕЙ ИП329/330-3-1 ВО ВЗРЫВОЗАЩИЩЕННОМ ИСПОЛ-НЕНИИ ПРИ ИХ УСТАНОВКЕ ВО ВЗРЫВООПАСНОЙ ЗОНЕ ПРОВЕРЯТЬ ТОЛЬКО С ПОМОЩЬЮ КОМПЛЕКТА ТЕСТОВОГО ВЗРЫВОЗАЩИЩЕННОГО ПРОИЗВОДСТВА АО «НИИ «ГИРИКОНД»!

2.4.17 После проверки опломбировать один из крепежных винтов основания ИПП.

2.5 Перечень возможных неисправностей

Перечень возможных неисправностей приведен в таблице 2.

 Таблица 2

 Характерные неисправности и методы их устранения

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Методы устранения
ИПП не срабатывает от тестового очага пожара на заданном расстоянии	Загрязнено входное окно ИПП Напряжение электропитания ИПП не соответствует указанному в 1.2.5 настоящего руководства Электромагнитная обстановка в месте установки ИПП на соответствует указанной в 1.2.20 – 1.2.22 настоящего руководства	Очистить входное окно ИПП Восстановить нормальное напряжение электропитания ИПП Устранить источник электромагнитных помех, или изменить место установки ИПП

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 В процессе эксплуатации ИПП следует проводить техническое обслуживание с периодическим контролем работоспособности в объеме ТО-1 и ТО-2.
- 3.2 В ТО-1 включают внешний осмотр ИПП, выявление механических повреждений на корпусе и входном окне фотоприемника, сохранение направления оси извещателя согласно проекту, очистку окна фотоприемника мягкой кистью.

3.3 В ТО-2 включают внешний осмотр ИПП, выявление механических повреждений на корпусе и входном окне фотоприемника, сохранение направления оптической оси ИПП согласно проекту, протирку входного окна фланелью, смоченной ректификованным спиртом, проверку работоспособности ИПП.

Проверку работоспособности ИПП проводят в соответствии с 2.4.16 настоящего Руководства.

3.4 Рекомендуемая периодичность обслуживания, месяцы:

- офисы, жилые помещения	TO-1 6 TO-2 12
- общественные помещения	TO-14
– производственные	10 2
помещения, склады, гаражи	TO-13 TO-26

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 4.1 ИПП в упаковке предприятия-изготовителя транспортируется любым видом транспорта без ограничения дальности в соответствии с ГОСТ Р 52931 (раздел 9).
- 4.2 Условия хранения ИПП должны соответствовать условиям хранения 3 по ГОСТ 15150.

5 КОМПЛЕКТНОСТЬ

Комплект поставки извещателя должен соответствовать таблипе 3.

Таблица 3

Наименование	Кол., шт.	Примечание
Извещатель пожарный пламени многодиапазонный ИП329/330-3-1 «НАБАТ ИК/УФ» (ТЦАФ.425241.029)	1	
Руководство по эксплуатации (ТЦАФ.425241.029 РЭ)	1	
Сертификат соответствия ТР ТС с дополнением	1	Для ИПП во взрывозащищенном исполнении (один на партию)

6 СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель, в соответствии с ГОСТ Р 52931, гарантирует соответствие ИПП требованиям ТУ 4371-013-23079412-2015 при соблюдении потребителем условий и правил эксплуатации, хранения и транспортирования.

- 6.1 Назначенный срок службы ИПП 10 лет.
- 6.2 Средняя наработка ИПП на отказ не менее $60x10^3$ часов.
- 6.3 Гарантийный срок эксплуатации ИПП устанавливается 36 месяцев с момента ввода его в эксплуатацию.
- 6.4 Гарантийный срок хранения ИПП устанавливается 18 месяцев с момента изготовления.
- 6.5 Безвозмездный ремонт, или замена ИПП в течение гарантийного срока эксплуатации производится при условии соблюдения потребителем правил эксплуатации, транспортирования и хранения.

6.6 В случае устранения неисправностей ИПП (по рекламации) гарантийный срок эксплуатации продлевается на время, в течение которого ИПП не использовали из-за обнаруженных неисправностей

7 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Извещатель пожарный пламени многодиапазонный ИП329/330-3-1 «НАБАТ ИК/УФ»: - обыкновенное исполнение □ - взрывозащищенное исполнение □ Номер______ соответствует техническим условиям ТУ 4371-013-23079412-2015 и признан годным для эксплуатации. Дата выпуска ______ Начальник ОТК ______

Содержание драгоценных металлов

8 СВИДЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ

Извещатель пожарный ИП329/330-3-1 «НАБАТ ИК/УС	пламени Ď»	много	диапазонный
номер конструкторской документации		согласно	требованиям
Дата упаковки			
Упаковку произвел		(штамп ОТК)	

9 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

При отказе в работе или неисправности извещателя в период гарантийного срока потребителем должен быть составлен технически обоснованный акт о необходимости ремонта и отправки извещателя предприятию-изготовителю с указанием наименования изделия, его номера, даты выпуска, характера дефекта и возможных причин его возникновения.

Акт составляется с учетом следующих документов:

- Сведения о вводе ИПП в эксплуатацию;
- Формы сбора информации (согласно таблице 4);
- Свидетельства о приемке.

Отказавшие изделия с актом направляются по адресу: Россия, 194223, Санкт-Петербург, ул. Курчатова д. 10, АО «НИИ «Гириконд».

10 ФОРМА СБОРА ИНФОРМАЦИИ

Одновременно со сведениями о рекламациях потребитель заполняет форму сбора информации об отказах (таблица 4).

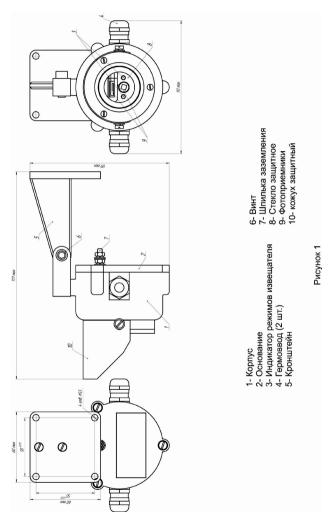
При отсутствии заполненной формы сбора информации об отказах рекламации не рассматриваются.

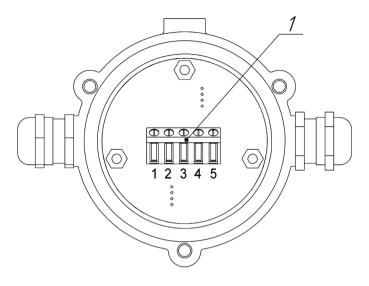
Все предъявленные рекламации регистрируют в таблице 5.

Таблииа 4

Наименование извещателя	Номер	Дата выпуска	Дата ввода в эксплуатацию
Условия эксплуатации	Дата возникновения отказа	Наработка к моменту отказа	Внешнее проявление отказа
		Предполагаемая	причина отказа
Способ устранения неисправности		Замечания и предложения по повышению качества извещателей	
Информация об упаковке изделия			

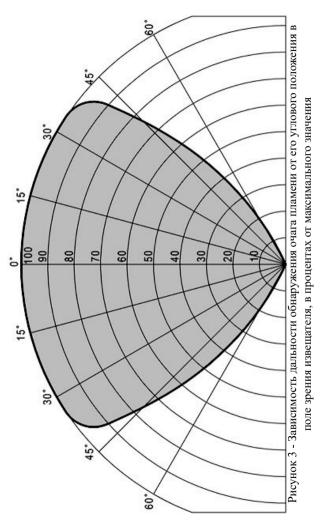
Таблица 5


Дата выхода изделия из строя	Краткое содержание рекламации	Принятые меры	Подпись ответственного лица


11 Сведения о вводе извещателя в эксплуатацию

Извещатель пожарный пламени многодиапазонный ИП329/330-3-1 «НАБАТ ИК/УФ»

заводской номер	
введен в эксплуатацию_	(дата ввода в эксплуатацию)
М. П.	
(


(подпись и фамилия лица, ответственного за эксплуатацию)

1- Клеммная колодка

Рисунок 2- Внутренняя часть извещателя

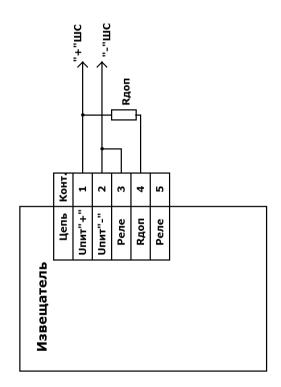


Рисунок 4 - Схема двухпроводного (питание по шлейфу сигнализации) подключения извещателя

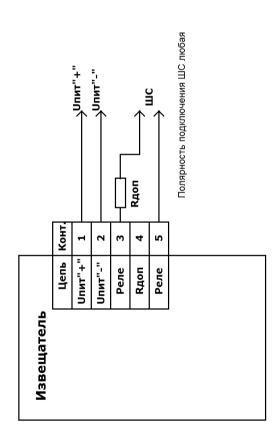


Рисунок 5 - Схема четырехпроводного (питание по отдельной линии) подключения извещателя